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SUMMARY OF THE PAPER

Multiwalled carbon nanotubes (MWCNTS) has been synthesized using
chemical vapor deposition (CVD) method. Al — Layered Hydroxide (Al-
LH) and MWCNTSs nanocomposites; (1-x) Al-LH + (x) MWCNTs, 0.0 <
X < 1; have been synthesized using citrate nitrate assisted hydrothermal
technique. The crystal structure and the functional groups of the prepared
samples were examined using X-ray diffraction (XRD) and Infrared
spectroscopy (FTIR) respectively. Their layered structure seemed under
the high-resolution transmission electron microscopy (HRTEM), and the
morphology was observed using field emission scanning electron
microscopy (FESEM). Moreover, the synthesized nanocomposites were
further characterized using Zeta potential and size analysis and Brunauer—
Emmett—Teller (BET) surface area which showed their different character-
istics as the MWCNTSs content is changed. Thermal gravimetric analysis
assured the thermal stability of the nanocomposites over the temperature
from room up to 480 °C depending on the MWCNTS content. The obtained
results revealed the improvement of all mechanical properties with the in-
crease of MWCNTS content.
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Multiwalled carbon nanotubes (MWCNTs) has been synthesized using chemical vapor deposition (CVD)
method. Al — Layered Hydroxide (Al-LH) and MWCNTs nanocomposites; (1-x) Al-LH + (x) MWCNTs,
0.0 <x < 1; have been synthesized using citrate nitrate assisted hydrothermal technique. The crystal
structure and the functional groups of the prepared samples were examined using X-ray diffraction
(XRD) and Infrared spectroscopy (FTIR) respectively. The layered structure seemed under the high-
resolution transmission electron microscopy (HRTEM), and the morphology was observed using field
emission scanning electron microscopy (FESEM). Moreover, the synthesized nanocomposites were
further characterized using Zeta potential, size analysis and Brunauer— Emmett—Teller (BET) surface area
which showed their different characteristics as the MWCNTs content is changed. Thermal gravimetric
analysis assured the thermal stability of the nanocomposites over the temperature from room up to
480 °C depending on the MWCNTs content. The obtained results revealed the improvement of all me-
chanical properties with the increase of MWCNTSs content.

Ultrasonic velocity

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Development of nanomaterials is one of the most important
advances in science. Nanomaterials are substances that have at
least one dimension in the nanoscale scope, which gives them
extraordinary physical and chemical properties, as well as quantum
effect, high-reactivity, and high-to-volume ratio. Even though
nanomaterials can be manufactured in one, two or three di-
mensions, dual dimension nanosheets has extremely fascinated
scientists because of their incomparable interaction properties
[1,2].

Layered hydroxides, with their adapted performance and
excellent physio-chemical properties, offer wide applications in
numerous fields, as water treatment, anticorrosion agent, like a
catalyst, flame retardants, sensors and electrodes in addition to its
usage in drug delivery systems [3—6]. They are made up of nano-
layers with unlimited two-dimensional layers with a thickness in
the nanoscale and contribute to large-scale applications in different
fields. These host layered materials can be characterized as layered
double hydroxides (LDH) and layered hydroxide salts (LH) [7,8].

* Corresponding author.
E-mail address: samaa@psas.bsu.edu.eg (S.I. El-dek).

https://doi.org/10.1016/j.jallcom.2019.02.218
0925-8388/© 2019 Elsevier B.V. All rights reserved.

Layered nanocomposites represent a specific class of multi-
purpose materials that has obtained numerous considerations in
recent years. The specialized structure of nanocomposites develops
a synergistic influence among the organic and nonorganic parts,
creating compounds with dissimilar physical or chemical proper-
ties compared with the isolated components. Theses nano-
composites allow the progress of innovative applications in
industry in addition to representing an inventive alternative to the
research for new materials. The potential usage of layered nano-
composites encompasses photovoltaic devices, intelligent mem-
branes, biochemical and chemical detectors, new catalysts,
separation devices, smart microelectronic devices in addition to
some materials merging ceramics and polymers, etc. [9—12].

MWCNTs gained more attention worldwide in the last decades
due to their superior chemical stability, excellent electrical con-
ductors, strength, stiffness, unique structural, high thermal con-
ductivities in addition to their full range of potential applications in
nanoelectronics, optics, sensors and nanocomposites [13,14].
Moreover, they can be reacted and treated using carbon-rich
chemistry as its composition consists of a pure carbon polymer.
Therefore, it may allow for many innovative applications in mate-
rials, electronic engineering, chemical processing, and energy
management due to the possibility of its structural modification
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and solubility optimization [15].

For both layered hydroxides and CNTs nanofillers, strong in-
teractions and homogeneous dispersion with the matrices are the
most important problem. Many investigations have been done on
modification and dispersion of LDH [16—18] and CNTs [19—-21] in
polymeric matrices. However, considering special structure and
properties of LDH and CNTs, it is very interesting to prepare LDH/
CNTs nanocomposites for their promising applications in the field
of electrocatalyst [22], hydrogen storage device [23], photo-
degradation of dye etc. [24]. Recently, this type of nanocomposites
has been synthesized by hydrothermal method [25,26], co-
precipitation method [22,24], dry grinding of CNT and LDH [27]
and wet mixing [28]. Moreover, no studies have been conducted on
the synthesis of AlI-LH and MWCNTs nanocomposites. Motivated
by this, we focused our work on the preparation of Al-LH/MWCNTs
nanocomposites using citrate nitrate assisted hydrothermal tech-
nique and investigation of their physical properties for potential
applications.

2. Experimental details
2.1. Synthesis of Al-LH nanoparticles

Al (NO3)3-6H,0 was used to prepare the layered hydroxide by
adding citric acid to metal nitrate with a ratio of 1:1. The reactants
were mixed in bi-distilled water under thorough stirring. The pH
value was adjusted to 7 using some droplets of ammonia solution.
The mixture was then transferred on a hot plate until drying where
a fluffy grey powder was observed to grow in the beaker. This
powder was collected, grinded and then transferred to a Teflon-
lined stainless-steel autoclave.

2.2. Synthesis of MWCNTs

2.2.1. Chemicals

MWCNTs were synthesized using a chemical vapor deposition
technique, using a tube furnace of 45 mm diameter and 60 cm
length quartz tube. All chemicals were utilized without further
purification.

2.2.2. Preparation of Fe/Co/CaCO3 supporting catalyst

The supporting catalyst for MWCNTs production was prepared
according to the reported method by Schwarz et al. [29] when an
appropriate quantity of calcium carbonate was grinded in a ball mill
for 15 h to minimize the particle size and increase the surface area.
After that, calcium carbonate, ferric nitrate Fe (NO3)3-9H,0 and
cobalt nitrate Co (NO3),-6H,0 were mixed together with ratios of
95%, 2.5%, 2.5% respectively. The mixture was then milled again for
2 h. After that, it was made in the form of paste by adding drops of
bi-distilled water and homogeneously mixed, dried at 120°C
overnight, and then grinded to get fine powder of supporting
catalyst [30].

2.2.3. Preparation of MWCNTs

Chemical vapor deposition method was utilized for the syn-
thesis of MWCNTs (see Fig. 1), in which acetylene with iron and
cobalt mixture in an inert gas atmosphere is presented into the
reaction chamber. During which, nanotubes were produced on the
substrate by the decomposition of the hydrocarbon at temperature
600—900°C at atmospheric pressure. The dimensions of the
formed nanotubes are related to the size of the metal particle used.
This technique offers more control over the length and structure of
the formed nanotubes compared with arc and laser methods.

This process can also be scaled up to produce industrial quan-
tities of MWCNTs. According to the reported method by Bahgat

Nitrogen

Oxidation

1

Fig. 1. Synthesis of MWCNTs using CVD technique.

et al. [30], MWCNTs was prepared as follow, 2 g of the supporting
catalyst was placed in an alumina boat and introduced into the
cylindrical quartz tube fitted inside a tube furnace and adjusted at
600 °C and the catalyst was preheated for 10 min in the presence of
nitrogen gas flow by a rate of 90 ml/min. After catalyst heating, a
flow of acetylene gas was allowed to pass over the catalyst through
the quartz tube at a flow rate of 90 ml/min for 40 min. After the
desired time, the acetylene flow was stopped and the product was
cooled to room temperature.

2.2.4. Purification and functionalization of MWCNTs

The extremely large surface area leads to a strong tendency to
form agglomerates. Surface functionalization helps in stabilizing
the dispersion since it can prevent re-aggregation of nanotubes and
also leads to coupling of MWCNTs with the polymeric matrix. Co-
valent functionalization of MWCNTs can be achieved by intro-
ducing some functional groups on defect sites of MWCNTs by using
oxidizing agents such as strong acids, which results in the forma-
tion of carboxylic or hydroxyl groups (—COOH, —OH) on the surface
of nanotubes. This type of functionalization is known as defect
group functionalization [30].

The functionalization process was performed as follow:

Ju

. Typically, 30 ml of conc. HNO3 and 10 ml of conc. H,SO4 were
injected into a 250 ml flask loaded with 5 g phosphorous pent-
oxide and 10 g of as obtained MWCNTs.

. The mixture was refluxed at 350 °C for 2 h to obtain MWCNTSs
suspended solution.

. The solution was washed with deionized water until pH of
filtrate approached that of distilled water.

. The final step is drying at 50 °C overnight to obtain carboxylated
MWCNTs (MWCNTs—COOH).

N

w

S

2.3. Synthesis of the AI-LH and MWCNTs nanocomposites

Al-LH and MWCNTs nanocomposites were synthesized using
the hydrothermal method [31]. In a typical procedure, the con-
stituents were prepared with the weights as shown in Table 1.
These nanocomposites were prepared using sonochemical method

Table 1
The constituents weight percent of the prepared nanocomposites.
X (WE%) MWCNTS (x) Al-LH (1-x)
0 0 100
25 25 97.5
5 5 95
7.5 7.5 92.5
100 100 0
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[32]. Each component was mixed with 20 ml of double distilled
water. Al-LH was well dispersed using Probe Sonication (Ultrasonic
Processor - Sonics & Materials, Inc. - Probe diameter is 5—8 mm).
MWCNTs were well dispersed using Bath Sonication (Elma Sonic —
Elma — S30H). They were then mixed and dispersed using Bath
Sonication for 30 min. The prepared solution was then poured into
the Teflon-lined stainless-steel autoclave with 100 ml capacity and
heat treated at 160 °C for 24 h. The autoclave chambers were air-
cooled to room temperature after the completion of the reaction.
The formed precipitates were washed several times with double
distilled water, and they were finally dried at 100 °C for 7 h in the
air.

2.4. Characterizations

The crystalline phases and d-spacing of the investigated nano-
composites were examined by X-ray diffraction (202964 PAN-
alytical Empyrean) using Cu Ko radiation (A = 1.54060 A) under the
operating conditions of 30 mA and 40 kV. The scanning range was
from 5° to 80° with a step size of 0.04° and a time per step of 0.5 s.
The experimental density was determined by the immersion
method using Archimedes' principle with toluene as a solvent. The
infrared spectroscopic analysis was carried out using the KBr pellet
technique on a Bruker (Vertex 70 FT-IR) spectrometer coupled to a
RAM Il FT-Raman module in the range from 4000 to 400 cm ™. The
microstructure was examined using high-resolution transmission
electron microscopy (HRTEM) model JEOL-JEM 2100 (Japan) with
an acceleration voltage of 200 kV. The morphology was depicted
using a Quanta FEG 250 (Czechoslovakia) field emission scanning
electron microscopy (FESEM) occupied with the energy-dispersive
X-ray spectroscopy (EDX) systems. The zeta potential was
measured by Zetasizer Nano-Zs90 (Malvern, UK). The N
adsorption-desorption isotherms were determined using
Micromeritics-Tristar II (USA), with the samples degassed at 80 °C
for 3h under vacuum prior to the measurements. The specific
surface area, pore-size distribution, and pore volume were esti-
mated from the isotherms by the Brunauer-Emmett-Teller (BET)
and Barrett-Joyner-Halenda (BJH) methods, respectively. Thermal
gravimetric analysis (TGA) and differential scanning calorimetry
(DSC) were performed on (SDT Q600 V20.9 Build 20) for the
nanocomposites in the range from room temperature up to 700 °C
using heating rate of 7°C/min under nitrogen atmosphere. The
longitudinal wave velocity Vi and shear velocity Vs through the
nanocomposites were measured applying ultrasonic pulse-echo
technique by using (GE model: USN60). The sound velocity was
propagated along the direction of pressing using Y-cut (shear) or X-
cut (longitudinal) transducer with the carrier frequency of 4 MHz. A
timer recorded the signal transit time At through the sample. The

sound velocity V was calculated using the equation: V :kf; [33]

where L' is the round-trip distance traveled by sound. All velocity
measurements in this study were carried out at room temperature,
and at frequency 4 MHz. The measurement accuracy was +0.5%.

3. Results and discussion
3.1. X-ray diffraction analysis (XRD)

Fig. 2: a—e shows the X-ray diffraction patterns of Al—LH,
MWCNTs and their nanocomposites. As apparent from the figure,
all diffraction peaks of Al-LH are indexed with the standard pattern
for AIO (OH) reported in (ICDD card no. 04-010-5683). The re-
flections observed at 20 =14.45°, 28.13°, 38.31°, 45.79°, 49.08°,
51.51°, 55.19°, 60.55°, 64.08°, 64.98°, 67.64° and 71.99° correspond
to the planes indexed as (020), (021), (130), (131), (002), (022),
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Fig. 2. (a—e): XRD patterns of (1-x) Al-LH + (x) MWCNTs nanocomposites with x = 0,
2.5, 5,75 and 100 wt%.

(151), (080), (132),(200), (171) and (152), respectively. The samples
were formed in an orthorhombic crystal form with space group
Cmcm as identified from the corresponding ICDD with 4 formula
unit per unit cell. It is clear that the crystal structure prefers the
growth in the b direction. With increasing the content of MWCNTs
in the nanocomposite, the reflections are nearly similar with their
respective ratios keeping the basic reflections of the MWCNTs
hindered owing to their poor crystallinity as compared with the
layered structure. Moreover, the observed peaks for MWCNTs at
20 =25.87°, 43.10°, and 65.68° correspond to the planes of (220),
(301) and (002), respectively, as indexed from (ICDD card no. 01-
083-3673). MWCNTs were formed in a tetragonal crystal form with
space group I4/mmm as identified from the corresponding ICDD
with 24 formula unit per unit cell. It is clear that the crystal
structure prefers the growth in the a and b directions. From
Fig. 2a—d, The XRD patterns exhibited sharp basic reflection series
at relatively low 20 angles indicating a well-crystallized structure
for the prepared nanocomposites.

The lattice parameters of the Al-LH were calculated based on
the orthorhombic symmetry using the equation [34]:

1 KB K P
?:P+P+? a+b+c (1)
where: d, (hkl), a, b, and c are the interplanar spacing, the Miller
indices of the plane, and the lattice parameters respectively. The
unit cell volume and theoretical density were calculated using the
equations [34]:

V=axbxc (2)
ZM
Pth:m (3)

where: V, pi, Z, M, and N are the unit cell volume, the theoretical
density, the number of molecules per unit cell, the molecular
weight and Avogadro's number respectively.

The obtained data are reported in Table 2 together with those
calculated for MWCNTs. The reported values are kept nearly con-
stant from x=0% up to x=7.5% indicating the stability of the
layered structure in addition to the minor changes caused by the
small amount of MWCNTs. The lattice parameters of MWCNTs were
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Table 2

915

The values of lattice parameters, Unit cell volume (V), X-ray density (p¢n) experimental density (pexp), porosity (P) and crystallite size (D) as a function x for the nanocomposites

(1-x) Al-LH + (x) MWCNTs with x =0, 2.5, 5, 7.5 and 100 wt%.

x (Wt.%) a(A) b (A) c(A) Vv (A%) pun (gfcm?) Pexp (gfcm?) P% D (nm)
0 2.8749 12.2028 37026 129.89 307 1.62 4723 32
25 28581 122799 37074 13012 3.06 147 51.96 29
5 28893 12.0411 37048 128.89 3.09 223 27.83 43
7.5 28773 121611 37037 129,59 307 1.83 4039 35
100 95351 95351 28431 258.48 185 - - 23

calculated based on the tetragonal symmetry using the equation
[34]:

1 WK P
d2 a2 c2’

(4)

a=b+c

where: d, (hkl), a, b, and c are the interplanar spacing, the Miller
indices of the plane, and the lattice parameters respectively. The
unit cell volume was calculated using the equation [34]:
V=a?xc (5)
where: V, a, and c are the unit cell volume and the lattice param-
eters respectively. The theoretical density was computed as
mentioned above eq. (3) and the porosity was computed from the
equation:

P— (1 J’ﬂ) %100
Pth

(6)

where: pexp is the experimental density and pgp is the X-ray density.
The average crystallite size was calculated from the well-known
Scherrer's formula for each phase separately [34]. The size ranged
from 29 to 43 nm for the investigated nanocomposites and was
23 nm for MWCNTSs.

3.2. Fourier transform infrared (FTIR)

Fig. 3 illustrates the FTIR spectra of AlI-LH and MWCNTs and
their nanocomposites. The spectrum of Al-LH exhibits bands at

3287cm ! (asymmetric stretching vibrations of (Al)O—H),
3090cm~!  (symmetric stretching vibrations of (Al)O—H),
=% 100 %
e}
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Fig. 3. (a-e): FTIR Spectra of (1-x) AI-LH + (x) MWCNTs nanocomposites with x =0,
2.5,5, 7.5 and 100 wt%.

2094 cm ™! (combination vibration of AI0O—H), 1975 cm™! (combi-
nation vibration of Al0—H), 1636 cm ™! (bending mode of adsorbed
H,0), 1453 cm™' (O—H vibration of hydration water), 1078 cm™"
(symmetric stretching vibration of Al-O—H), 1153cm™!
(asymmetric stretching vibration of Al-O—H), and bands at
746cm~!, 620 and 496cm ™! (the vibration mode of <AlOg>)
[35—37]. The spectrum of the nanocomposite with x=2.5%;
Fig. 3b is very similar to that of Al-LH, except for the bands at
3453 cm ™, and 1018 cm ™! might be ascribed to the stretching vi-
bration of the hydroxyl groups in the layered structure [38]. The
spectrum of MWCNTs exhibits bands at 3856 and 3746 cm™"
denote the OH stretching of a hydroxyl group attached to MWCNTSs
walls [39], 3421 cm ™! could be assigned due to the hydroxyl group
(—OH). This band may be due to both water and also the functional
groups (—OH) resulting from the chemical treatment during the
purification and functionalization processes, respectively [40].
Additional bands also seem in the MWCNTSs spectrum at 2916 cm ™!
(asymmetric stretching of C—H), 2858 cm™" (symmetric stretching
of C—H), 2381cm™! (the stretching of C=C), 1704cm™' (the
stretching of —COOH group), 1644 cm~" (C=C stretching vibration),
1518 cm™! (the stretching of C=C), 1062 cm™! (C—C stretching vi-
bration), and 1431 cm ™! (the C—H bend of the alkyl chain) [39,41].
The appearance of a band around 1160 cm ™' proves that the band
observed around 1704 cm ™! corresponds to the carboxylic group
due to the interaction between the —CO bending and —OH
stretching [40]. As could be noted from Fig. (3a—d), nearly similar
spectra were obtained for all nanocomposites. It may be due to the
small amounts of MWCNTs combined into the Al-LH matrix. It is
also noted that band positions corresponding to MWCNTs as well as
Al—LH are shifted in the spectra of the obtained nanocomposites.
All these findings demonstrate the presence of interaction between
MWCNTs and Al—LH.

3.3. High-resolution transmission electron microscopy (HRTEM)

The microstructure of the samples was examined using High-
resolution transmission electron microscopy and illustrated in
Fig. 4. The Al-LH is observed as typical layers arranged in the Z-
direction (3-D arrangement). These layers are shown to have a
regular geometric form. From a closer look, the orthorhombic
symmetry is clarified which is in line with the X-ray data analysis.
For x = 2.5%, the layers are seen to be stacked and possess nearly
the same crystallinity. Increasing MWCNTs content, the ortho-
rhombic symmetry of the layers is preserved while the 3-
dimensional arrangement is altered and/or randomness is started.
At x =7.5%, some of the layers are remarked from a side view be-
sides the ones oriented in a top one. The MWCNTs are obviously
clear to be of inner diameter 6.47 nm, outer one 31.26 nm and more
than 3 walls are countable. From a higher magnification and
zooming in, the view is slightly different with more details. The
layers are proved to have very good crystallinity and the layer
thickness is measured. The stacking here is obvious due to elec-
trostatic attraction. The MWCNTSs at x = 5 and 7.5% are anchored on
the layer surface without changing the geometry. The interlayer
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Fig. 4. HRTEM micrographs of (1-x) Al-LH + (x) MWCNTs nanocomposites; (a) x =0,

(b) x=25, (c) x=5, (d) x="7.5, (e) x =100 wt’%.

space is enlarged in the case more than the parent LH i.e. without
MWCNTs. The amount of the later is very small in the micrographs
where the content here, in this case, is considered to be low. The
insets of the figure represent the selected area electron diffraction
(SAED) where clear rings are noticed and get sharper for the
nanocomposite indicating better crystallinity.

3.4. Field emission scanning electron microscopy (FESEM)

FESEM is used to examine the surface morphology of the
investigated samples either LH, MWCNTs or the prepared nano-
composites. Fig. 5 showed the excellent homogeneous surface of
the LH in the orthorhombic form with the cracked rough surface.
From a deep look, the LH orthorhombic crystals are well defined
and the surface becomes clearer. The crystals are seen from the top.
Some morphology and crystalline features of the grains are
remarked in x=2.5%. The microcrack formation on the layer's
surface is a common characteristic trend either for LH or nano-
composites. For x = 5%, the microcracks and pores are deeper and
the grain arrangement is altered. At x=7.5%, the growth of
MWCNTs on the LH surface is simply clarified and the grown
nanotubes are oriented to bridge between the different grains.
Generally, the LH and their nanocomposites resemble to a dehy-
drated clay surface which recommends them for water decon-
tamination and versatile water treatment. The MWCNTs are seen to
be formed in an ordered oriented tubular form bundled together in
a homogenous manner. The spaghetti-like shape is observed with
diameter =40 nm and of micron length. Zooming out the nano-
tubes of carbon are likely to form silk ball morphology.

The micrographs of FESEM were processed by Gwyddion 2.50
software to investigate the surface roughness of the investigated
nanocomposites [42,43]. The file extensions were jpg without
further calibrations. After that, selected areas in the micrographs
were cropped to avoid graph boundaries using the software.
Thereafter a 3D graph was created for each micrograph. The reso-
lution of the micrographs was kept at 1500 x 1100 pixel to facilitate
the comparison. The roughness parameters were calculated using
the same software. Fig. 6a—e shows the dependence of surface
roughness on MWCNTs content. The micrographs elucidated that
the roughness arises as a function of x. Table 3 shows that the
maximum height of the roughness (R;) increased from 0.38 to
0.64 um. Also, the root means square roughness (Rq) increased from
68 to 119 nm for the investigated nanocomposites from x = 0.0 to
100 wt %.

3.5. Zeta potential and size

Zeta potential is an important physicochemical parameter that
estimates the surface charge and colloidal stability of nano-
suspensions [44]. The large positive values of the zeta potential
assure the stability of the nanocomposites in water at the ambient
conditions [45]. From the data in Table 4, all nanocomposites are
positively charged with different values of potential. The zeta size
indicated the hydrodynamic diameter of the nanocomposites un-
der investigation where it varied depending on MWCNTs concen-
tration. The largest one is at the concentration (x = 5%) of MWCNTs.
These large values are due to the particles existing in a layered form
which is in line with the observation of HRTEM Fig. 4.

3.6. BET surface area analysis

The N, adsorption-desorption isotherms for all prepared sam-
ples are shown in Fig. 7. All samples showed a typical type IV
isotherm with a clear H3 hysteresis loop which is a common feature
of layered materials [46]. The values of BET surface area, pore width,
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Fig. 5. FESEM micrographs of (1-x) Al-LH + (x) MWCNTs nanocomposites; (a) x=0, (b) x=2.5, (c) x=5, (d) x=7.5, (e) x= 100 wt%.
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Fig. 6. Roughness of the investigated samples (1-x) Al-LH + (x) MWCNTSs; (a) x=0, (b) x=2.5, (c) x=5, (d) x="7.5, and (e) x = 100 wt%.
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Table 3

Roughness parameters for the investigated nanocomposites of (1-x) Al-LH + (x)
MWCNTs with x =0, 2.5, 5, 7.5, and 100 wt%.

X (wt.%) Ra (nm) R¢ (pm) Rq (nm)

0 96.55+11.30 0.6363 +0.07298 119.7 +£13.51
25 54.43 +4.58 0.3778 +0.04618 68.11 +5.815
5 79.41+7.18 0.5058 +0.05053 97.53 +7.876
7.5 91.63 +19.53 0.5249 +0.1003 113.6 +23.94
100 66.58 +4.98 0.4432 +0.04629 81.75+5.95

and pore volume are summarized in Table 5. The BET surface area of
the 2.5 wt % sample enjoyed the largest value of surface area due to
the addition of the MWCNTs and its smallest crystallite size. With
further increase in the MWCNTs concentration, the crystallite size
increased and the surface area is decreased. These results agree
with those reported [47]. The difference between the values ob-
tained for MWCNTs (x=100%) and the other nanocomposites
originated from the morphological feature of the MWCNTs. The
measured pore width is nearly about 3.3 nm and the samples are
classified as mesoporous [46].

Table 4
The values of zeta potential and zeta size as a function x for the nanocomposites (1-
x) Al-LH + (x) MWCNTs with x =0, 2.5, 5, 7.5 and 100 wt%.

X (wt.%) Zeta potential (mV) Zeta Size (nm)
0 34.63 443.43
25 32.00 349.70
5 33.40 487.97
7.5 38.23 388.53
100 2.06 14770

3.7. Thermal properties

3.7.1. Thermal gravimetric analysis

Thermal gravimetric analysis (TGA-DTG) was carried out for the
investigated nanocomposites from room temperature up to 700 °C
to quantify the improvement in their thermal stability as shown in
Fig. 8. The pure Al-LH and the nanocomposite with x = 2.5% suffer
three steps decomposition Fig. 8 a, b which is typically shown by
Layered Hydroxides. Their first weight loss step was observed at
about 55.69°C and 67.99°C with weight losses of 1.365% and
3.690% respectively. This step is ascribed to the loss of adsorbed
moisture. The second weight loss step was observed at 215.39 °C
and 243.10 °C with weight losses of 2.904% and 6.486% respectively.
This step is ascribed to the dehydration of the interlayer water
existing in the Al-LH. The final step was observed at 463.63 °C and
460.28 °C with weight losses of 16.35% and 13.54% respectively
which corresponds to the removal of water due to the dehydrox-
ylation of the brucite-like layers. In this step, metal hydroxide was
converted to Al oxide [48].

The nanocomposites with x=>5 and 7.5% undergo dual steps
decomposition Fig. 8c, d with the first step (54.41 °C and 67.13°C
with weight losses of 6.370% and 7.058%) being attributed to the
loss of adsorbed moisture. The final stages (480.18 °C and 473.27 °C
with weight losses of 16.87% and 17.08%) are due to the complete
formation of the oxide [39]. Increasing MWCNTs concentration
(x =5 and 7.5%) leads to the improvement of the thermal stability of
the investigated nanocomposites. The reason for this improvement
is that MWCNTs are turning around themselves to form silk ball-
like as seen in FESEM micrographs Fig. 5e. This finding is in line
with the crystallite size as with increasing the later the decompo-
sition takes place at higher temperatures [48,49)].
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Fig. 7. N, adsorption-desorption isotherms (a) and corresponding pore size distribution curves (b) of the Al-LH and MWCNTs nanocomposites.

Table 5

The values of surface area, pore width and pore volume as a function x for the nanocomposites (1-x) Al-LH + (x) MWCNTs with x =0, 2.5, 5, 7.5 and 100 wt%.
x (wt.%) Surface Area (m?/g) Pore width (nm) Pore volume (cm’/g) Classification Type
0 51.86 3.29 0.17 Mesoporous v
25 63.36 327 0.42 Mesoporous v
5 48.28 339 0.22 Mesoporous I\
75 32.60 3.36 0.19 Mesoporous I\%
100 (MWCNTs) 169.38 - - - -

3.7.2. Differential scanning calorimetry analysis

Differential scanning calorimetry (DSC) was performed for the
prepared nanocomposites from room temperature up to 700 °C as
depicted in Fig. 9. All nanocomposites exhibit an exothermic
decomposition reaction with the formation of the oxide at high
decomposition temperatures. The exothermic peaks take place at
502.51°C, 513.41°C, 50751°C and 507.54°C for the

nanocomposites with x =0, 2.5, 5 and 7.5 wt% respectively. Only the
nanocomposite with x = 2.5 wt% exhibits an endothermic decom-
position reaction with the dehydration of the interlayer water
existing in the Al—LH at 248.69 °C.

3.7.3. Activation energy
The kinetics of a reaction is usually governed by the activation
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energy barrier that is required to be overcome. A low rate of ther-
mal degradation implies an increased thermal stability of the ma-
terial, which should be accompanied by a rise in activation energy.
Thermal gravimetric data is utilized to calculate the activation en-
ergy based on three methods; Coats-Redfern, Horowitz—Metzger,
and Broido.

3.7.3.1. Coats-Redfern method. This method obeys the equation
[50,51]:

[ )

where: « is the fraction of sample which decomposed at time t, T is
the absolute temperature (Kelvin), A is the Arrhenius pre-
exponential factor, R is the universal gas constant (8.314 J/mol K),
@ is the heating rate which equals dT/dt and E, is the activation
energy.

S
>

By plotting the dependence In [’(]T;

a)

versus 19%0 for each

sample, a straight line was obtained and from the slope, the acti-
vation energy can be calculated as:

Eq = —R x slope (8)

3.7.3.2. Horowitz—Metzger method. Horowitz—Metzger equation
was formulated as [52,53]:

 Edf

In [ln(l 7a)’1] =12 9)

where: R is the universal gas constant, §# = T — T while T is the
given temperature and Ts is the temperature at a reaction step from
DTG curve.

By plotting the dependence In[In(1 — a)’l] versus ¢ for each

sample, a straight line was obtained and from the slope, the acti-
vation energy can be calculated as:

Eq =slope xR x T? (10)

3.7.3.3. Broido method. Broido introduces a model to calculate the
activation energy using the equation:

In {ln (%)} =— (’%") %+ constant (11)

where: Y is the fraction of the nondegraded material and calculated
as:

My
- m; —myg

Y (12)

where: mg, m; and my are the residual weight at temperature t,
initial weight and final weight of the sample, respectively. By

plotting the dependence In|in ‘17 versus ’1r for each sample, a

straight line was obtained and from the slope, the activation energy
can be calculated [51,54] as:

Eq = —R x slope (13)

Fig. 10a shows the activation energy values (E,) of the investi-
gated samples by Coats — Redfern, Horowitz—Metzger and Broido
methods. From a common view, they have the same trend but with
different values. The activation energy of the nanocomposites with
x=15 and 7.5% are found to be greater than that of the pure Al-LH
and the nanocomposite with x = 2.5% which indicates that better
thermal stability can be achieved with increasing MWCNTSs con-
centration. This finding is in line with the crystallite size as the later
gives the same trend as shown in Fig. 10 [48,49]. From these results,
it can be concluded that thermal stability of these nanocomposites
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Table 6
The values of longitudinal velocity (V), and shear velocity (Vs) as a function x for the
nanocomposites (1-x) Al-LH + (x) MWCNTs with x=0, 2.5, 5 and 7.5 wt%.

X (wt.%) Vi (m/s) Vs (m/s)
0 910 780
25 812 551
5 732 569
7.5 711 551

was improved with increasing MWCNTs concentration making
them a good candidate for use in high-temperature applications in
the thermal range from the room temperature up to 480 °C.

3.8. Mechanical properties

The longitudinal velocity Vi and shear velocity Vs for the
investigated nanocomposites were measured using the ultrasonic
pulse-echo technique and summarized in Table 6.

Using the values in Tables (2) and (6), several parameters
including the longitudinal modulus (L), Rigidity modulus (G),
Poisson's ratio (o), Bulk modulus (B), and Young's modulus (E) were
calculated using the relations below [33,55] and the results are

Table 7

The elasticity parameters L, G, B, ¢ and E in addition to the calculated Vickers
microhardness Hy as a function x for the nanocomposites (1-x) Al-LH + (x) MWCNTs
withx=0, 2.5, 5 and 7.5 wt%.

x(wt%) L(GPa) G(GPa) B(MPa) o E(GPa)  H, (GPa)
0 134 0.99 27.38 -088 023 091
25 0.97 045 37291 007 0.96 0.13
5 1.19 072 23213 026  1.06 037
75 0.93 056 18452  -025 083 0.28
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displayed in Table 7:

L:PexpV% (14)
G = pexp V3 (15)
4
B=L-5G (16)
3B-2G
°~8Br26 an
E=(1+0)2G (18)

The calculated Vickers microhardness (Hy) is related to Young's
modulus (E), and Poisson's ratio (c) by the following relation and
the results are displayed in Table 7.

(1-20)E

Hy = 6(1+0)

(19)

From the data in Table 7, the pure Al-LH and the nano-
composites with x=5 and 7.5% exhibit a negative Poisson's ratio
where it expands under the applied stress. Therefore, these nano-
composites are auxetic materials [42,56]. It is demonstrated that
the pure Al-LH displays higher negative ratio than that of other
samples which leads to high indentation resistance. This expecta-
tion is matched well with the microhardness results. This is obvious
result due to the existence of interlayer spacing in the layered
hydroxide.

The calculated Vickers microhardness decreased with the
addition of MWCNTs in the investigated nanocomposites, with
negative deviation from the trend at the concentration of x = 2.5 wt
% as shown in Fig. 11a. This finding is in line with the porosity as the
later gives the opposite trend. The negative deviation is ascribed to
lower roughness and also to the lower density of that
nanocomposite.

On the other hand, Young's modulus is improved by 417%, 460%,
and 360% compared to neat Al-LH with 2.5, 5 and 7.5 wt% MWCNTs
respectively. Moreover, the Bulk modulus is enhanced by 14, 9 and
7 times compared to that of the pure Al-LH with 2.5, 5 and 7.5 wt%
MWCNTs respectively as clarified in Fig. 11b. This large improve-
ment is related to the strong interfacial interaction between
MWCNTs with Al-LH. The nanocomposites with x = 2.5 and 5 wt%
exhibit larger improvement than that of the nanocomposite with
x = 7.5 wt% which are related to their larger surface area as clarified
in Fig. 11c. From these findings, these nanocomposites are a
strongly recommended as 3D hybrid nanofillers.

4. Conclusion

Multiwalled carbon nanotubes were successfully synthesized
using chemical vapor deposition method. Al — Layered Hydroxide
and MWCNTs nanocomposites; (1-x) Al-LH + (x) MWCNTs,
0.0 <x<1; were successfully synthesized using citrate nitrate
assisted hydrothermal method. All the nanocomposites exhibit
large positive values of the zeta potential which assure their sta-
bility in water at the ambient conditions. The dehydrated clay
surface of the prepared nanocomposites recommends them for
water decontamination and versatile water treatment. The 2.5 wt %
sample has the largest value of surface area as well as its smallest
crystallite size. Moreover, the measured pore width of the samples
is nearly about 3.3 nm and they are classified as mesoporous. The
nanocomposites with x = 5 and 7.5% exhibit better thermal stability

with increasing MWCNTs concentration and increasing the crys-
tallite size making them a good candidate for high-temperature
applications. The calculated Poisson's ratio showed an auxetic
behavior. The calculated microhardness was found to be in line
with the calculated Poisson's ratio and the porosity as the later
gives the opposite trend. Moreover, a nice correlation was estab-
lished between calculated microhardness and the roughness. The
Young's modulus is improved by 417%, 460%, and 360% compared to
neat Al-LH with 2.5, 5 and 7.5 wt% MWCNTs respectively. More-
over, the Bulk modulus is enhanced by 14, 9 and 7 times compared
to that of the pure Al-LH with 2.5, 5 and 7.5wt% MWCNTs
respectively. This large improvement is related to the strong
interfacial interaction between MWCNTs with Al-LH. Owing to the
superior mechanical properties of these samples (x =2.5 and 5 wt
%), the discussed results may suggest a new methodology for the
fabrication of reinforcing nanofiller.
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